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Periodically kicked Duffing oscillator and nonattracting chaotic sets
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The Duffing oscillator perturbed periodically by a sequence of short kicks of a constant strength
is investigated. It appears that long time behavior of a such system may be connected with a
nonattracting chaotic set which exists in a free unperturbed system. This set corresponds to the
unstable periodic orbits (placed on the basins boundaries) and their unstable manifolds.

PACS number(s): 05.45.+b, 05.40.+j

High dimensional dissipative systems may possess two
or more different attractors coexisting for a given set of
control parameters. The attractors may be either stable
periodic cycles or chaotic sets. A suitable choice of initial
conditions gives us a possibility to observe different kinds
of asymptotic behavior for t - +o00. Each attractor is
embedded in its own basin of attraction and each two
neighboring basins are separated by a basin boundary.
Very often a boundary is a complicated fractal set [1, 2].
The trajectory, which starts exactly from a point belong-
ing to this set, does not approach any attractor but it
stays on a boundary forever. However, the probability
of finding such a peculiar trajectory in any experiment
is equal to zero. It is a direct consequence of the fact
that a basin boundary is a nonattracting set [3] (saddle
periodic points and their stable manifolds). Any exper-
imental trajectory which starts even very close to this
nonattracting set leaves its close neighborhood after a fi-
nite time and tends to the corresponding attractor. Thus,
the tracing of a single long trajectory is not sufficient in
the investigation of a nonattracting set. Instead, we must
consider an ensemble of relatively short trajectories and
from each trajectory we must cut off a piece properly so
that it approximates well a part of the nonattracting set
[4]. Then, we can glue together these properly selected
pieces of trajectories and we can get a set which is very
close to the searched true nonattracting set. This general
procedure was successfully applied in a few numerical [5,
6] and experimental [7, 8] investigations.

In spite of the simplicity of the described procedure,
much less attention was paid in the past to studying the
properties of nonattracting chaotic sets than to the prop-
erties of chaotic attractors. One may argue that the at-
tractor is a “natural” asymptotic state of a dissipative
dynamical system, while the nonattracting set may be
seen only in a specially designed experiment. Thus, the
attractor and its properties are much more important. It
is not alwayes true. The aim of this paper is to show
that in certain circumstances the nonattracting set may
be responsible for the long time behavior of the system
and the role of the attractor is then reduced significantly.

Such a situation may arise when stochastic noise
is added to the purely deterministic dynamics [9-11].
Stochastic perturbation disables a trajectory to reach the
final attractor. Noise of sufficiently large amplitude o
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may even switch a trajectory between two or more basins
of attraction. In this case, a trajectory spends much more
time in the neighborhood of the deterministic (for o = 0)
basin boundaries than in the vicinity of purely determin-
istic attractors. If the coexisting attractors are simple
periodic cycles then a noisy trajectory drastically differs
from the noiseless one [11] (for example, the greatest Lya-
punov exponent of a noisy system may become positive).
Thus, the nonattracting chaotic set which exists for a
deterministic system becomes responsible for the asymp-
totic behavior of a noisy system.

In the current paper we investigate the deterministic
dynamical system which is perturbed by a periodic se-
quence of kicks. The studied system is the Duffing oscil-
lator

Z(t) + yz(t) + ad;V(z) = Asin(2nt/T) , (1)

where the asymmetric double well potential V(z) is given
by

1 1
Viz) = Zam4 + -bz® — 503;2 . (2)

The parameter b is periodically switching between two
constant values: by and by — A; see Fig. 1. The pe-
riod of the two state oscillations is denoted by 7 while A
and 7, = €T stand for the amplitude and the duration
of a single kick, respectively. One may expect that for
the strength of kicks A — 0 the dynamics of the per-
turbed system will not differ significantly from the free
unperturbed dynamics. On the other hand, for large A
and short period 7 the perturbed system may be quite
far from the free system and both dynamics may have
nothing in common. The most interesting is the case of
intermediate values of the amplitude A, the relatively
long period 7, and the short duration of kick 7. In this
range of parameters the free system is perturbed rarely
by short lasting pulses. The time interval between two
successive kicks is sufficintly long to enable a relaxation
of the system to its free dynamics.

The unperturbed Duffing oscillator is studied for the
following parameters: A = 0.7262, T = 1.7943, and
4 = 1 and the potential parameters a = 10, by = 7.5,
and ¢ = 100. For these parameters we can observe four
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FIG. 1. The two state oscillations of the parameter b [see

Eq. (2)], which introduce a perturbation to the Duffing oscil-
lator.
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FIG. 2.

different coexisting attractors. We look at the image of
uniformly distributed starting points after time t = nT,
where n = 1,2, ..., N. More precisely, a surface of section
(z(t),y(t), 4o = 0) is plotted, where y(t) = &(t) and ¢,
is the fixed phase of the sinusoidal drive of period 7. A
few examples of such images are shown in Fig. 2. The
most striking feature of these plots is a very fast contrac-
tion of the space of the initial conditions to a certain set.
Most of the trajectories visit first this set and spend a
finite time in its neighborhood before they reach a par-
ticular attractor. More detailed analysis suggests that
this nonattracting set is very close to the unstable man-
ifolds of a few unstable periodic points which are placed
on the basins boundaries.

The asymptotic behavior of the unperturbed system
is connected to four different coexisting attractors; see
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The image of 80 x 80 uniformly distributed initial points after time (a) t = T, (b) t = 2T, (c) t = 20T, (d) t = 70T

(T is the period of the sinusoidal drive). The last picture coincides with the plot of four coexisting attractors: The triangle
and the cross correspond to the two different attractors of period T', respectively. Two stars represent the period 2T attractor
and heavy dots refer to the three piece chaotic attractor. All four plots are obtained for the unperturbed system (A and € are

equal to zero).
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FIG. 3. (a) A piece of one long trajectory generated by the

periodically kicked Duffing oscillator; see text for details; (b)
the chaotic attractor generated by the unperturbed Duffing
oscillator but for slightly different parameters: A = 0.795,
T =1.7943, v = 1.025, a = 10, bo = 0.25, and ¢ = 120.

Fig. 2(d). The situation changes drastically when we
start to kick the system periodically. The parameters
of the perturbing sequence are equal: the amplitude
A = 17, the period of perturbation 7 = 107, and the

duration of a single kick 7, = €T' with ¢ = 0.08. In
Fig. 3(a) a part of the long trajectory generated by the
periodically kicked Duffing oscillator is shown. The total
evolution time #;,; = 450007 but only the middle part of
the trajectory for time ¢ satisfying 20 0007 < ¢ < 250007
is plotted in Fig. 3(a). For other time intervals the cor-
responding plots look very similar. Thus, the numerical
experiments seem to suggest that a long time behavior of
the perturbed system is connected to the nonattracting
set which exists in the unperturbed system; see Fig. 2 and
Fig. 3(a). Moreover, this set appears to be very close to
the chaotic attractor which exists in the free unperturbed
system for other control parameters; see Fig. 3(b).

In order to check that the perturbed oscillator may
generate a chaotic trajectory, we integrate a few pairs
of trajectories. Each pair starts from two different ini-
tial points and the distance bewteen these points is very
small. After a suitable long time (¢;,: ~ 150T) the end-
points of each two trajectories are completely uncorre-
lated.

The permanent behavior connected with the nonat-
tracting chaotic set presented here is only one of many
possible reactions of the dynamical system on the peri-
odic perturbation. For example, for other parameters of
the perturbing sequence we can observe long transient
chaos which -looks very similar to the permanent evolu-
tion shown in Fig. 3(a). This transient ends on the final
periodic attractor which may correspond to one of the
original (unperturbed) attractors or it may correspond
to a new attractor which exists only in the perturbed
system.

In summary we want to stress that the role of nonat-
tracting sets is certainly not less important than the role
of attractors. Both kinds of sets may be responsible for
the long time behavior of a system. A typical repellor is
usually characterized by an infinite hierarchy of unstable
periodic orbits. The nonattracting set investigated here
consists of only a few unstable periodic orbits and their
unstable manifolds. In spite of this, this rather uncom-
plicated set may be connected with quite complicated
chaotic evolution of a periodically kicked oscillator.
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